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Abstract: 

Training an Artificial Intelligence for automated data analysis of phased-array ultrasound 

data is a complex task. Firstly, the source of the phased-array ultrasound data is varied 

instrument-wise and coming from many different types of inspection: carbon steel welds, 

corrosion mapping, plastic welds. Secondly, the operator collecting the data and the 

conditions in which the data is collected influences the quality of the data. Thirdly, the 

knowledge and habits of the analysts analysing the data to be fed to the AI for training 

has a strong influence on the way the AI will recognize patterns. All these aspects of the 

training must be well understood in order to train an unbiased Artificial Intelligence. In 

this paper, we will present the methodology and results in training Ondia’s own artificial 

intelligence dedicated to the automated analysis of phased-array ultrasound data. 

1. Introduction 

Training an Artificial Intelligence (AI) to analyse phased-array ultrasound (PAUT) data 

from weld inspection in 3D is a complex task.  The goal of our study is to better 

understand how adding a specific type of data, in this case austenitic steel weld datasets, 

to a pool of carbon steel weld datasets will influence the AI’s capacity to find indications 

in unseen carbon steel weld datasets. 

Our hypothesis is that adding 6% of austenitic steel weld indications to a pure carbon steel 

weld dataset of indications will improve the AI’s ability to detect indications in austenitic 

steel scans as well as improve the AI’s ability to detect indications in carbon steel scans. It 

is also our hypothesis that since austenitic steel weld scans have a lot more noise than 

carbon steel weld ones, it should force our model’s parameters to be more robust to noise 

during training making it generally better at finding indications during inference. 

2. Measuring the performance of the trained Artificial Intelligence 

2.1. Dataset splitting 

The data used to construct a deep learning model usually comes from two distinct datasets: 

the training dataset and the testing dataset. The testing dataset is used to validate the 

model’s performance on examples it has never seen before, this process is of utmost 

importance to properly understand the model’s behavior on the field. The training dataset 

is used to fit the model’s parameters during training by an iterative optimization algorithm 

such as stochastic gradient descent, it is commonly the greater of the two splits. In the case 

of the current model, the training dataset is made up of 85% of the available data while the 

testing dataset is made up of the remaining 15%. 

If a model outputs undesirable results on the testing dataset it is predominantly due to one 

of two phenomena: underfitting or overfitting. Underfitting occurs when the model has 

been undertrained or does not have enough training examples thereby hindering on the 

model’s ability to learn from useful features in the data. Overfitting occurs when the model 

has been over trained causing the parameters of the model to simply memorize the training 

data giving the false impression of a good training to the optimization algorithm.  



In order to compute accurate performance metrics, the testing dataset needs to be a 

representative sample of the whole data. To sample representatively we employ a 

stratification mechanism which ensure that the training and testing datasets have the same 

proportions of defect types. 

2.2. Performance metrics 

To assess accurately the performance of a model which outputs 3d bounding boxes, we 

look at three different metrics: precision, overlap and confidence levels.  

Precision gives a representative value of the model’s ability to find boxes on examples 

where it should. To compute its value, we simply take the ratio between bounding boxes 

the model outputted in the testing dataset and the number of bounding boxes there actual 

was in the ground truth. For example, if the testing set contains 150 examples of defect 

bounding boxes and the model outputs 120 bounding boxes on those 150 examples, then 

our precision would be 120/150 = 80%.  

The overlap metric determines how accurate the predicted boxes are in terms of location 

and size. To measure a box’s overlap, we compute the Jaccard index. The Jaccard index 

varies between 0 (no overlap) and 1.0 (perfect overlap). 

 

Source: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ 

The last metric, the confidence level, is a value the model outputs for each bounding box. 

It is an important performance metric take into consideration since a model which outputs 

a wrong bounding box with a high confidence level should be considered worse than a 

model which outputs a lower one. 

2.3. Mean Average Precision (mAP) 

There exists a metric called average precision which merges precision, overlap and the 

confidence level into a single metric. Computing the mean of all the average precisions of 

each box on our testing dataset gives us back the mean average precision (mAP) which is 

a common metric used to compare bounding box detection models in the field of deep 

learning. Its value mathematically is bound between 0 and 1.0 but due to the nature of 

bounding boxes and the methods used to compute the metric, getting close to 1.0 becomes 

infinitely harder. 

2.4. Final Training Evaluation 

To compare one training to another we simply look at the shift in the mean average 

precision from one training run to another. It is also important to look at the shift in mean 

average precision by defect type as doing so might reveal potential flaws in the model. If, 

for example, we are comparing two models — Model 1 and Model 2 — which are both 

able to detect two different types of defects — Type 1 and Type 2 — and both models 

advertise a mean average precision of 0.6. If Model 1 detects the defect of Type 1 with a 

mAP of 0.9 and Type 2 with a mAP of 0.3 and Model 2 does so with a mAP of 0.7 and 0.5 

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/


respectively, then Model 2 is a much more favorable model as it has better generalized the 

concept of a defect. 

3. Conclusions 

Contrary to our hypothesis, adding 6% austenitic steel weld indications didn’t improve the 

AI’s capacity to find indications. The AI’s capacity to find indications in carbon steel weld 

scans is lower when austenitic steel weld indications are added to the carbon steel weld 

training pool as shown in the graphic 1 and 2. 

 
Graphic 1. 
 

 
Graphic 2. 
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This could partly be due to the nature of our austenitic data. Compare to carbon steel weld 

data collection, the parameterization of the instrument and the frequency of the probe are 

different for austenitic steel weld data collection. Frequency filters, signal smoothing and 

lower probe frequencies are used during austenitic steel weld data collection modifying the 

aspect of the indication as seen in Figures 1 – 4. 

  

Figure 1. 2D pattern of a lack of sidewall fusion in 

austenitic steel 

Figure 2. 2D pattern of a lack of sidewall fusion in 

carbon steel  

  

 
 

Figure 3. 3D pattern of a lack of sidewall fusion in 

austenitic steel 

Figure 4. 3D pattern of a lack of sidewall fusion in 

carbon steel  

 

Due to the fact that 3D patterns from similar indications in carbon steel welds and austenitic 

steel welds have major differences, it is therefore our conclusion that in order to merge 

austenitic steel weld indications and carbon steel weld indications in a single training pool, 

a larger sample of carbon steel weld indications as well as a larger proportion of austenitic 

steel weld indications is needed. 


